
58 The Delphi Magazine Issue 54

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Watching TDateTime Values

QIs there a way to display a
TDateTime as a date/time

string in the debugger and/or
watch list? We do a lot of stuff with
dates and times and it would be
very helpful to display a TDateTime
variable as an actual date/time in-
stead of as a floating point variable.
At the moment I have to copy the
floating point value from the watch
list into a simple application that
translates it into a string. It works,
but is very tedious.

AIf you are using Delphi 5,
then the answer is very posi-

tive. The debugger now allows you
to get the results you want. Com-
pare the Delphi 4 Add Watch dialog,
shown in Figure 1 with the en-
hanced dialog from Delphi 5,
shown in Figure 2. Notice the
primary difference? It’s the addi-
tion of a checkbox that says Allow
Function Calls.

The default state for this option
is off. But if you turn it on for a
watch, you are able to make func-
tion calls in the expression being
evaluated. This means you can
pass your variable to DateTime-
ToStr, TimeToStr or DateToStr, as
required.

The option can be enabled glob-
ally, such that the checkbox will be
automatically checked for new
watches, by selecting Tools |
Debugger Options..., and on the
General page of the dialog enabling
the Allow function calls in new
watches checkbox.

Take the small code snippet in
Listing 1. If you place a breakpoint
on the ShowMessage call, you can
add some watches which make
function calls as mentioned before.
This does rely on the functions
existing in your application. In
order to evaluate these function
calls, the debugger calls the

routines in your application. If the
function is not called by your appli-
cation (either by your own code, or
by VCL code pulled in by the
linker), the linker will have
stripped it from the application.
Figure 3 shows some watches
showing a partial degree of
success calling functions.

Executable File Differences

QI have an archive of a project
I built some while ago. In-

cluded in the archive are the
source files for the project, the op-
tions file, resource file (.RES) and
also a copy of the final executable.
This was built with exactly the
same version of 32-bit Delphi as I
am currently using (including
Update Packs).

I have just tried to rebuild this
archived software. Whilst the
generated executable is the same
size, a file comparison reveals
differences. Why could this be?

AThis is an obvious source
of concern to many soft-

ware companies. You have a ten-
dency to expect that the same
source with the same compiler
and linker options will generate
exactly the same binary file if fed
through the exact same compiler
version. Unfortunately, in the
Win32 environment, this is often
not the case.

The principal thing here is that
the PE file format has various
fields reserved for the linker to
store date/time stamps in. The
main EXE header portion can
have a date/time stamp that

should indicate when the file
image was created. Also the
import table, export table,
resource tables and so on can also
have similar date/time stamps.

These date/time stamps are
DWord fields (a DWord is the same as
a Cardinal, an unsigned 32-bit inte-
ger) that record the number of sec-
onds elapsed between midnight on
January 1st, 1970 and the recorded
date/time. C compilers have a

var DT: TDateTime;
...
procedure TForm1.Button1Click(Sender: TObject);
begin
DT := EncodeDate(1999, 5, 26) + EncodeTime(6, 0, 0, 0);
DT := DT + 365;
ShowMessage('Date has been increased by one year')

end;

➤ Listing 1

➤ Below: Figure 1,
Adding a watch in Delphi 4.

➤ Middle: Figure 2,
Adding a watch in Delphi 5.

➤ Bottom: Figure 3,
Watches calling functions.



February 2000 The Delphi Magazine 59

ctime() function in their runtime
library that can take such a value
and display it, but Delphi does not.
Consequently, if you wish to view
intelligible representations of arbi-
trary date/time stamps, you need
to roll your own version.

However, if you wish to decode
the date/time stamps that are pres-
ent in your executable file, the
latest version of TDump does the
job. Delphi 4 came with version
5.0.16.4 of TDump. This version
listed the time stamp values as
hexadecimal numbers and left
them at that. Delphi 5 comes with
the slightly later version 5.0.16.6.
This newer version helps out by
calling ctime() (it is written in
Borland C++) and writing out the
represented date and time.

So, to prove the point about
these date/time stamps you can
compile an application in Delphi
once, run TDump and record the
details it produces, recompile the
project and re-run TDump.

This is what happened when I
tested it out. I loaded up a fresh
new project into Delphi 5 and
pressed Ctrl+F9 a few times. The
reason for the re-compilations was
to give Delphi a chance to warm up,
but also to avoid another issue
which might cloud matters, as will
be discussed later.

The generated executable was
copied into a directory called One.
In a console window I navigated
to this directory and generated
a TDump log using this
command-line:

TDump Project1.Exe Dump.Txt

I then waited a couple of minutes
and re-compiled the same project
again. The EXE was copied to a
directory called Two and the same
command-line was run from there.

Comparing the two dump files
revealed that the only difference
found by what TDump examined
was the resource table time stamp.
The project that was compiled first
had a timestamp of $27918F0D and
the other one had a timestamp of
$27919050.

When you compare these
findings with what the DOS binary
file comparison tool FC.EXE finds,
you should see that the date/time
stamps are to blame. Listing 2
shows what FC.EXE produced. You
can see that the only differences
are between values which are parts
of the timestamp values.

There is one point about these
timestamp values worth bearing in
mind. This new version of TDump
actually highlights the fact that the
Delphi linker uses nonsense values
for timestamps. The value of
$27918F0D mentioned above
decodes to 10:59:25 on Monday
January 14th 1991. $27919050
decodes to 11:04:48 on Monday
January 14th 1991. As you can see,
these are over eight and a half
years out of date.

This problem has been reported,
but whether it is deemed impor-
tant enough to fix for Delphi 6 we
shall see.

I mentioned earlier that there
was another factor which might
cloud the issue here. When you
make a new project and compile it
once, then compare that execut-
able with a second compilation,
there will in fact be more differ-
ences than just the timestamps.
The first compilation will have a
different import table and reloca-
tion table than all subsequent
compilations.

Maybe there is some sorting
done by the IDE if the same project
is re-compiled, but the outcome is
that these two EXE tables are laid
out differently. The import table
seems to have the same content,
just in a different order. I assume
that the relocation table also has

effectively the same content, but
this is more difficult to test.

When archiving an executable,
compile it several times first, just
to make sure. When doing comp-
arisons, rebuild your comparison
project several times too. This will
result in fewer file differences.

Common Control
Library Version Mismatch

QI’ve designed an application
where I am using the

TListView component with the
CheckBoxes property set to True.
When I run the application on two
machines where Delphi is in-
stalled, the checkboxes appear as
they should. However, when I in-
stall the application on a machine
that does not have Delphi installed
on it, the checkboxes do not
appear. Since the checkboxes
don’t appear, the users are unable
to select the appropriate items
with them. Is this a Windows prob-
lem, in that a particular DLL is
out-of-date or missing?

AThis is probably an indica-
tion that the machines do

not have a recent enough version
of ComCtl32.Dll on board. You can
download the latest version from
Microsoft’s website, as I men-
tioned in Issue 33 (although, re-
gretfully, the precise URL for the
file seems to change every now
and then...).

According to the MSDN, the
checkbox support requires at least
version 4.70 of ComCtl32.Dll. This
version was distributed with
Internet Explorer 3.x. If the target
machine has an earlier version, the
Microsoft information suggests
that you are using a raw installa-
tion of Windows 95 or Windows NT
4 with no Internet Explorer.

There have been a number of
releases of this DLL (and its associ-
ates Shell32.Dll and Shlwapi.dll)
with each new one adding new
common control features. If you
know the required version of the
Common Control Library your
application needs, you can check
that it is installed on the target
machine during program initialis-
ation. If an appropriate version is

Comparing files One\Project1.exe and
Two\project1.exe

00003004: 0D 50
00003005: 8F 90
00003034: 0D 50
00003035: 8F 90
0000304C: 0D 50
0000304D: 8F 90
00003074: 0D 50
00003075: 8F 90
0000308C: 0D 50
0000308D: 8F 90
000030A4: 0D 50
000030A5: 8F 90
000030BC: 0D 50
000030BD: 8F 90
000030D4: 0D 50
000030D5: 8F 90
000030EC: 0D 50
000030ED: 8F 90
00003104: 0D 50
00003105: 8F 90
0000311C: 0D 50
0000311D: 8F 90

➤ Listing 2



60 The Delphi Magazine Issue 54

not installed, you can report an
error.

Table 1 shows all the recorded
versions of the DLL suite, along
with information about what prod-
uct introduced that version. Also
in the table is information about
some constants that are defined in
the ComCtrls unit in Delphi 4 and
later. These constants relate to
specific versions of the Common
Control Library and can be used to
compare against the return value
from the function GetComCtl-
Version. If this function has already
been called, the variable ComCtl-
Version from the ComCtrls unit will
record this number as well.

Delphi 4 defines the first three
constants (ComCtlVersionIE3, Com-
CtlVersionIE4 and ComCtlVersion-
IE401) whilst Delphi 5 adds in
ComCtlVersionIE5. Presumably
Delphi 6 will also define a new
ComCtlVersionIE501 constant with
the last value from the table, and
any others that become necessary.

Since you need version 4.70 for
checkbox support in a listview, you
check that GetComCtlVersion >=
ComCtlVersionIE3 before proceed-
ing normally in your application.

Dynamic Array Question

QI have a question about dy-
namic arrays. I can declare a

dynamic array of bytes variable
and give it a size using a call to
SetLength. I wish to initialise the
array with a specific value ($FF), so
I use a call to FillChar. I’d expect to
be able to write the following:

FillChar(TheArray,
Length(TheArray) *
SizeOf(Byte), $FF)

However, after doing this, any
access to an array element causes
an Access Violation. However, the
same approach with a normal
array gives no problem. Why?

AThis is due to the implemen-
tation details of dynamic

arrays. Before getting onto that,
let’s check the parameter details of
the FillChar procedure. The decla-
ration of it is shown in Listing 3.

The first parameter is an
untyped var parameter; these are
passed by reference, which means
the address of the item passed in is
sent across to the routine. Because
the parameter is untyped, it does
not care what item you pass as the
parameter. No type checking is
done. Instead, whatever you pass
has its address sent through to the
procedure.

The implementation of FillChar
writes the Valueparameter into the
memory block that starts at the
address passed by the var
parameter, for Count bytes.

Now let’s check how things work
with a normal array. Listing 4
shows code that works just fine
with a fixed size array. When the
compiler compiles this, it sees that
the local variable TheArray requires
100 bytes of storage and ensures

that the entry code for this routine
(Button2Click in this case) allo-
cates 100 bytes for it on the
program stack.

When TheArray is passed to
FillChar, the address of the first
byte of that 100-byte block is
passed through as the first param-
eter. The address of the beginning
of a variable’s storage space
equates to the address of the vari-
able. FillChar executes its respon-
sibilities by writing the specified
value of $FF into that memory
location, and also to the 99
memory addresses that sequen-
tially follow it.

To contrast this, let’s see what
happens with a dynamic array
variable. Listing 5 shows code that
parallels Listing 4 in the case of a
dynamic array, but just as for the
questioner, produces an Access
Violation because something is
not right. When the compiler com-
piles the dynamic array variable, it
does not know how much space
the array will ultimately require,
but knows that it is a dynamic
array. When space is needed for
the array (thanks to a call to
SetLength) it will be allocated as
required, but the program will
need to record the address of the
allocated memory somewhere.

ComCtl32.DLL Version Distributed With ComCtrls Unit Constant ComCtrls Unit Constant Value

4.00 Windows 95/Windows NT 4 MakeLong(4, 0)

4.70 Internet Explorer 3.x ComCtlVersionIE3 MakeLong(4, 70)

4.71 Internet Explorer 4.0 ComCtlVersionIE4 MakeLong(4, 71)

4.72 Internet Explorer 4.01
and Windows 98

ComCtlVersionIE401 MakeLong(4, 72)

5.80 Internet Explorer 5 ComCtlVersionIE5 MakeLong(5, 80)

5.81 Windows 2000 MakeLong(5, 81)

➤ Table 1: Versions of the Win32
Common Control Library.

procedure FillChar(var X; Count: Integer; Value: Byte);

➤ Listing 3: The declaration of FillChar.

procedure TForm1.Button2Click(Sender: TObject);
var
TheArray: array[1..100] of Byte;
Loop: Integer;

begin
FillChar(TheArray, Length(TheArray) * SizeOf(Byte), $FF);
for Loop := Low(TheArray) to High(TheArray) do
ListBox1.Items.Add(Format('Element %.3d has a value of $%x',
[Loop, TheArray[Loop]]))

end;

➤ Listing 4: Filling a normal array with a value.



February 2000 The Delphi Magazine 61

Consequently, TheArray is taken
to be a pointer. It is a pointer con-
taining the address at which the
memory for the dynamic array will
reside. The compiler will allocate 4
bytes of memory on the stack for
this variable, which is the space
required for a pointer (memory
addresses are 32 bits wide). You
can verify this by evaluating
SizeOf(TheArray), which will give 4.

Herein lies the difference
between a fixed size array and a
dynamic array. As far as writing
normal array element access code
in Delphi is concerned, they
appear exactly the same, using the
same syntax. But a dynamic array
is really a pointer to the memory
space that is dynamically allocated
from the heap at runtime, thanks to
calls to SetLength. When you
access an element of a dynamic
array, Delphi de-references the
pointer to find where the elements
are, then indexes into that memory
space to access the array element.

When TheArray is passed to
FillChar, the address of this
pointer is passed through as the
var parameter. FillChar will fill
those 4 bytes, along with the next
96 bytes in memory, with $FF. This
means that as far as your program
is concerned, the dynamic array
memory now starts at address
$FFFFFFFF. The fact that FillChar
fills up the 4-byte dynamic array
pointer, along with the following 96
bytes, means that any other local
variables declared before the
dynamic array variable will be
overwritten.

Of course this is very wrong. You
need FillChar to write to the
memory that represents the
dynamic array elements, not the
memory that records the address
of where those elements are. Con-
sequently, you should try passing
either Pointer(TheArray)^ or
TheArray[Low(TheArray)] as the
first parameter to FillChar.

The Pointer version turns the
TheArray variable into what it really
is at the machine level, a pointer. It
then de-references the pointer to
access the array element memory.
Because the expression is being
passed to a var parameter,
FillChar will be passed the

address of that array element’s
address space.

The second option is possibly
the better one, as it does not
involve any references to pointers.
You pass an expression which
equates to the first element in the
array and the compiler will ensure
that that element’s address is
passed over to FillChar. A benefit
of using this approach is that it will
work just as well with normal fixed
size arrays as well. This allows
consistent programming with any
type of array.

Either way, the element memory
will be overwritten with values,
rather than the pointer that holds
the element memory address.

Incidentally, before leaving the
subject, a similar problem can
happen when trying to fill Delphi
ShortString variables (which are
basically fixed arrays of
characters) and 32-bit Delphi long
strings. Long strings (which are
what we normally use in Delphi
these days) are also implemented
as a pointer to some dynamically
allocated memory.

TImage.OnProgress Broken?

QI have tried to use the
OnProgress event of a TImage

to display a progress bar while my
program loads a large (40Mb)
bitmap file. Although the Object
Inspector will manufacture an
event handler for this event, it
never gets called (I’ve set break
points everywhere).

AThree classes define an
OnProgress event in the VCL

in Delphi 3 and later: TImage,
TPicture and TGraphic.

When you set up a TImage
OnProgress event handler, the
TPictureobject that represents the
image component’s Picture prop-
erty is told to trigger it as
necessary. This is achieved by the

image setting the TPicture object’s
OnProgress event to be handled by
a method in the image object.

Similarly, when the picture
object has an event handler, it
makes sure that whatever graphic
object it uses triggers its event
where necessary, by assigning one
of its own methods to the graphic
object’s OnProgress event. The
buck stops with the graphic
object. If it triggers its OnProgress
event, this event will be chained up
to the TImage component’s
OnProgress event.

The question is, under what cir-
cumstances will a graphic object
trigger OnProgress. According to
the online help for TGraphic.
OnProgress, “for certain descen-
dants of TGraphic, OnProgressoccurs
during slow processes such as load-
ing, storing, or transforming image
data”. Note that it stipulates this
happens with certain descendants.
The help for the image compo-
nent’s OnProgress event goes on to
say: “Write an OnProgress event
handler to provide the user with
feedback during slow operations
such as loading large compressed
images.”

Bitmaps are not compressed
files. Consequently, TBitmap (as
well as TIcon and TMetafile) do not
trigger OnProgress. In fact, the only
graphic object that comes with
Delphi that will trigger OnProgress
is TJPEGImage. This class is in the
JPEG unit (the source is not
installed with the normal VCL
source, but you can find it on your
Delphi installation CD). Add the
unit to any uses clause in your
application, and you will be able to
load JPEG images, which are then
able to trigger the OnProgress event
(if they are large, or complex
enough).

procedure TForm1.Button1Click(Sender: TObject);
var
TheArray: array of Byte;
Loop: Integer;

begin
SetLength(TheArray, 100);
FillChar(TheArray, Length(TheArray) * SizeOf(Byte), $FF);
for Loop := Low(TheArray) to High(TheArray) do
ListBox1.Items.Add(IntToStr(TheArray[Loop]))

end;

➤ Listing 5: Attempting (and
failing) to fill a dynamic array
with a value.



62 The Delphi Magazine Issue 54

Figure 4 shows the sample appli-
cation in Delphi’s Help\Examples\
JPEG directory, with progress
displayed on the caption bar.

Custom Grid Drawing

QI need to change the colour
of a row in a DBGrid depend-

ing on the value of an item in the
underlying table.

AIn Delphi 1, you can do cus-
tom drawing of a grid cell us-

ing the OnDrawDataCell event
handler. This event is triggered
whenever a cell needs to be drawn.
If the grid’s DefaultDrawing prop-
erty is False, then the responsibil-
ity for drawing the content of all
cells lies with the OnDrawDataCell
event handler. The event handler
is passed four parameters that de-
scribe the cell, so that you are
well-placed to draw its representa-
tion in the grid. The parameters are
the grid itself (this is the Sender
parameter, passed as a TObject ref-
erence) and a TRect record describ-
ing which portion of the grid is
occupied by the cell. You also get a
TField reference that represents
the field whose value is to be
drawn and finally a set parameter
describing the state of the cell.

Delphi 2 (and later) also sup-
ports this event, but the newer
OnDrawColumnCell should be used in
preference. OnDrawDataCell is con-
sidered obsolete in these more
recent versions and only exists for
backward compatibility of source
code. The OnDrawColumnCell event
handler does not get a TField refer-
ence, but gets a TColumn reference
instead. DBGrids started using
column objects in Delphi 2 to rep-
resent the attributes of a whole

column in the
grid. The column
object has a ref-
erence to the
field object that it
represents. In
addition to the

column object, the event handler
also gets an integer parameter that
indicates the position of the
column object in the grid’s Columns
array property.

The State set parameter passed
to both event handlers is defined
to be of type TGrid- DrawState,
defined as a set of up to three
values: gdSelected, gdFocused and
gdFixed. State will include
gdSelected if the cell is currently
selected, which means that it is the
active cell and would normally be
filled with the system highlight
colour (dark blue by default). It will
include gdFocused if the cell is cur-
rently focused, which means it is
the active cell, typically having a
dotted line around its border to
indicate this. The State set will
contain gdFixed if the cell is a fixed
cell, such as a column header cell
or a cell in the indicator column.

When the appropriate event
handler is called, the grid’s canvas
object will be set up for the normal
drawing. To make minor changes
to the cell’s appearance, such as
changing the background colour,
you should be able to simply
change the relevant property of
the canvas. After this, you call a
method of the grid that invokes
normal drawing behaviour and it
finishes the job for you.

For 16-bit Delphi, some
code that does this job is
shown in Listing 6. As each
cell needs to be drawn, the
event handler in the listing is
called. This looks at the
dataset that the cell’s field
comes from, and checks to
see if the designated criteria
are met. In this case, if the
TaxRate field (from the
DBDEMOS Customer.DB table)

in the current row is more than
zero, then the cell should be drawn
with a green background. Since
this check will be found true for
each cell in the row, the whole row
will be drawn green.

To avoid confusing the display,
if the cell is selected, then it is still
drawn with the usual blue back-
ground. To suggest that it meets
the criteria, the font is turned
green instead (see Figure 5). If this
was not catered for, then the user
would have a more difficult task
identifying which cells were
selected.

After setting the canvas proper-
ties, the grid’s DefaultDrawDataCell
method finishes the job off. A small
project on this month’s disk called
Grid16.Dpr contains this code.

In the case of 32-bit Delphi, there
is an additional consideration. As
well as supporting column objects,
DBGrids also support multiple
selection of entire rows. To enable
this, you turn on the dgMultiSelect
element of the grid’s Options set
property. Once enabled, the user
can click on one row to select it
and, with the Ctrl key held down,
click on other rows to select them
as well. Alternatively, holding the
Shift key down allows the up and
down cursor keys to select
multiple contiguous rows.

Unfortunately, when a row is
selected in this way, but is not the
‘active’ row, the gdSelected value
does not make it into the State set
parameter. This means we have to
make a specific check to see if the
cell being drawn is part of a row
that is currently in a multiple
selection.

➤ Figure 4:
Loading a
JPEG image
with progress
indication.

➤ Figure 5: A grid with multiple
selection support and custom
cell drawing.



64 The Delphi Magazine Issue 54

Multiple selection in a DBGrid is
implemented by a collection of
bookmarks. For each selected
record, a bookmark string for that
record (as read from the underly-
ing dataset’s Bookmark property) is
added to the SelectedRows prop-
erty (a TBookmarkList object). To
see if the current row is selected,
we must find whether the book-
mark string for the current row is in
the grid’s bookmark list. You can
pass a dataset bookmark string to
the IndexOf method of a TBook-
markList object and it will return
that bookmark’s position. A value
of -1 indicates the bookmark is not
in the list.

Listing 7 has the appropriate
code to take this into account. If
the cell is in a multiple selection
row, code manually adds the
gdSelected value into the State
parameter so the rest of the logic
works as before. The method you
need to call from an OnDrawColumn-
Cell event handler to finish draw-
ing a cell is called DefaultDraw-
ColumnCell. You can find this code
in Grid32.Dpr on the disk.

procedure TForm1.DBGrid1DrawDataCell(Sender: TObject; const Rect: TRect;
Field: TField; State: TGridDrawState);

begin
with (Sender as TDBGrid) do begin
{ Our criteria means green cells, but if the cell is selected, }
{ stick with the default blue background but use green font }
if Field.DataSet.FieldByName('TaxRate').AsFloat > 0 then
if gdSelected in State then
Canvas.Font.Color := clGreen

else begin
Canvas.Brush.Color := clGreen;
Canvas.Font.Color := clWhite;

end;
DefaultDrawDataCell(Rect, Field, State)

end

➤ Listing 6: 16-bit Delphi code to custom draw certain rows.

procedure TForm1.DBGrid1DrawColumnCell(Sender: TObject; const Rect: TRect;
DataCol: Integer; Column: TColumn; State: TGridDrawState);

var DataSet: TDataSet;
begin
with (Sender as TDBGrid) do begin
DataSet := Column.Field.DataSet;
//Our criteria means green cells, but if the cell is selected,
//stick with the default blue background but use green font.
if DataSet.FieldByName('TaxRate').AsFloat > 0 then begin
//Selection might be due to multi-selection,
//which needs separate checking.
if (dgMultiSelect in Options) and
(SelectedRows.IndexOf(DataSet.Bookmark) <> -1) then
Include(State, gdSelected);

if (gdSelected in State) then
Canvas.Font.Color := clGreen

else begin
Canvas.Brush.Color := clGreen;
Canvas.Font.Color := clWhite;

end
end;
DefaultDrawColumnCell(Rect, DataCol, Column, State)

end

➤ Listing 7: 32-bit Delphi code to custom draw certain rows.


	Watching TDateTime Values
	Executable File Differences
	Common Control Library Version Mismatch
	Dynamic Array Question
	TImage.OnProgress Broken?
	Custom Grid Drawing

